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(Spoiler: only Swift and Julia make
the cut)

Alan Edelman (MIT & JC)
Viral Shah (Julia Computing)

Juan Pablo Vielma (MIT)
@E& esJulia Chris Rackauckas (UC Irvine)

o ...
CSAIL  computing Ui JUIla



Software Toolchain
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Ezample: deep neural network Ir”l = p(Arzr + by)
Vr=R,...,0, ;;,E;E:%! M, p(Arzy+b) OV, €
Multiphysics (PDEs) Optimization Adjoint Methods Machine Surrogate Models
(Backprop/Autodiff) Learning Dim Reduction
Composability Sensitivity Analysis Performance Uncertainty Scalable
Confidence Intervals Nimble/Agile Quantification
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Modern Software Development




Languages Studied by Google as Powerful for ML
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https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md
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Languages Studied by Google as Powerful for ML

Julia: Julia is ... currently investing in machine learning
techniques, and even have good interoperability with
Python APIs. The Julia community shares many common
values...

2. Filter on Usability
1. Filter on Technical Merits
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Psychology of Programming Languages

All languages are
equally good.

... but | tune out
any mention of
languages | don’t
use
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...at least until
Google tells me
to pay attention
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Topology Optimization ---- 20 years ago what we did

Write Force Balance Law = Finite Elements = Linear System = Solve = Graph

Dense Matrices

!

Sparse Matrices



Fancy Differential Equations = Dimensionality Reduction =

Write Force Balance Law = Finite Elements = Linear System = Solve = Graph

Topology Optimizaton .
Dense Matrices

!

Compose many physical systems Sparse Matrices



Black Boxes vs White Boxes
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Black Boxes vs White Boxes

FIoatmg Point Generic Types

Numbers ﬁ

visible
code

Floating Point

Numbers ﬁ

© Legacy Code ConoriT
ypes
@ Can’t hit all the criteria Code must rewrite other code




An Idealized Modern Toolchain for Energy

(we can have this!)

Today (Fragmented) What could be with high level tools

& generic types
PDEs, PDMPs, ... floats in o
< trigger on demand,
True Physical Equations sensitivity analysis
floats out adaptive data generation
Neural Network, ... floats in for more accurate surrogates
l < needs programmable form
iali machine learnin
floats out specialized a!c. ine ea. |. g.
floats in models for efficient optimization
optimal solutions with
Optimization uncertainty estimates

floats out N Ihr jUIla



RETROFITTING YOUR MANUFACTURED

HOME FOR ENERGY EFFICIENCY

o Install energy-efficient windows and doors
@ Replace insulation in the belly

6 Make general repairs (seal bottom board, caulk
windows, doors, ducts, etc.)

Q Add insulation to your walls
@ Install or seal belly wrap

Add insulation to your roof or install a roof cap




Retrofitting your software for
machine learning, sensitivity analysis, scalability,

optimization

0 Install energy-efficient windows and doors

.1} Add insulation to your walls
9 Install or seal belly wrap

e Add insulation to your roof or install a roof cap




ML models are really programs

- Support hardware accelerators (GPUs, TPUs, Nervana, New silicon)
- Parallelization (Multi-threading, Multi-GPU, Distributed)

- Optimization (Placement, Memory Use, Low overhead)

- Automatic Differentiation

- Ease of programming (Math notation, Debuggers, Libraries)

- Ease of deployment (Cloud, Phones, Embedded)

ML problems are really language problems



New models have new demands

Models commonly need: ®
Conditional branching

Loops for recurrence

@
Recursion over trees . _ ingesiously N
# Stanford TreeBank i e constructed
def model(tree):
if isleaf(tree):
tree.value Memento

else:

model(tree.left) + model(tree.right)

In areas such as probabilistic programming

- Models need to reason about other programs (e.g. program generators and interpreters)

- Include non-differentiable components like Monte Carlo Tree Search.


https://arxiv.org/pdf/1503.00075.pdf
https://eng.uber.com/pyro/
https://arxiv.org/pdf/1705.03633.pdf
https://arxiv.org/abs/1605.06640

TensorFlow i1s more like a language and

less like a library

® We build a “computational graph” (essentially an AST)

a = tf.constant(3.8, dtype=tf.float32) Lazy (Eval) programming in JS
b = tf constant(4.8) # also tf.float32 implicitly Add
const3
total = a + b )
print{a) consts function add(a,b) {
print(b) N s
+
print(total) ) return “${aj+${b}
® Which may contain control flow (tf.if, tf.while), variable scoping x=1y=2
def my_image_filter(input_images): Z= add( X,y ) n Xty
with tf.variable_scope( conv1"): eval(Z) /13
# Variables created here will be named "convi/weights”, "convi/biases —4
relul = conv_relu(input_images, [5, 5, 32, 32], [32]) X=
with tf.variable_scope(“conv2"): eVﬂ'(Z) /I 6
# Variables created here will be named “convZ/weights”, “conv2/biases”.

return conv_relu(relul, [5, 5, 32, 32], [32])

® Cannot reuse existing libraries. Need new libraries for I/O and data processing.

Abadi, M., Isard, M., Murray, D., A Computational Model for TensorFlow: An Introduction, 2018.



Mixed Integer Optimization and Julia

* Mixed Integer Optimization
 Discrete + nonlinear
* Theoretically hard
* Routinely solved in practice
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* Optimization
modelling language
and interphase

* Easy to use and
advanced

* Integrated into Julia



GPU computing in Julia

Native Array Libraries — CuArrays.jl, GPUArrays.jl, CLArrays.|l
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CUDAnNative.jl: 1,300 LOC

performance difference (%)
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benchmark

Performance difference between CUDA C++ and CUDAnative.jl
implementations of several benchmarks from the Rodinia
benchmark suite.

Besard. T., Foket, C., De Sutter, B., Effective Extensible Programming: Unleashing Julia on GPUs, 2017.



Julia ML at PetaScale to catalog the visible universe

650,000 cores. 1.3M threads. 60 TB of data.

Cataloging the Visible Universe through Bayesian Inference at Petascale

Jeffrey Regier®, Kiran Pamnany!, Keno Fischer!, Andreas Noack®, Maximilian Lam®, Jarrett Revels®,
Steve Howard¥, Ryan Giordano¥, David Schlegel!, Jon McAuliffe¥, Rollin Thomas', Prabhat!

*Department of Electrical Engineering and Computer Sclences, University of California, Berkeley
t Parallel Computing Lab, Intel Corporation
1Julia Computing
SComputer Science and Al Laboratories, Massachusetts Institute of Technology
SDepartment of Statistics, University of California, Berkeley
' Lawrence Berkeley National Laboratory

Berkeley

UNIVERSITY OF CALIFORNIA
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It just works (Part I)

N
=" stackoverflow

importance of PCA or SVD in machine learning

. Allthis time (specially in Netflix contest), | always come across this blog (or leaderboard forum)
where they mention how by applying a simple SVD step on data helped them in reducing sparsity in
31 data or in general improved the performance of their algorithm in hand. | am trying to think (since

Autodiff:
Calculus from another angle

“We can teach our autoditf
system to differentiate the
svd” vs “Itjust works
because of built in
abstractions in language
design”

(and the special role played by Juka's multipie dispatch and compiler technology)

At the heart of modem machine learning, so popular in (2018), is an optimization probid
suddenly differentiation, especially automatic differentiation, is exciting.

The frst time one hears about automatic differentiation, it s easy to imagine what it is
what

Automatic Differentiation in 10 minutes with Julia
1,692 views

. The Julia Language
Published on Jun 1,2018

Automatic differentiation is a key technique in Al - especially in deep neural networks. Here's a
short video by MIT's Prof. Alan Edelman teaching automatic differentiation in 10 minutes using

Julia.
SHOW MORE




It just works (Part II)

Machine learning with

operators (not dense Build Operators
matrices, not sparse solve with
matrices) “backslash”
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Software Toolchain
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Ezample: deep neural network 41 = p(A,2r + by)
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Multiphysics (PDEs) Optimization = Adjoint Methods
(Backprop/Autoditf)
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